Opinions
Anke Fossgreen

«The fear of genetically modified plants is unwarranted»

Genetically modified plants have garnered a negative reputation, but with new methods, they can hardly be distinguished from conventionally bred plants, as Anke Fossgreen argues in the 'Tages-Anzeiger.'

Thursday, May 25, 2023

The umbrella organization of organic agriculture, Bio Suisse, unanimously decided at its delegates' meeting on Tuesday to continue to refrain from using genetic engineering. The result is not surprising, but disappointing. It demonstrates that organic farmers are disregarding the advancements made in modern breeding research and perpetuating the negative perception of genetically modified food.

Ironically, it is precisely future genetically modified plants that offer possibilities that are important for organic farming as well. Modified plants can, for example, be resistant to diseases, reducing the need for pesticides. They can also be more durable, thereby reducing food waste, or they can withstand drought, which is crucial in the face of climate change.

However, why do many consumers refuse to eat genetically modified plants or animals fed with such plants? These plants, such as wheat, maize, and soybeans, are viewed with suspicion because their genetic makeup has been altered in the laboratory. Yet the fear of 'foreign genes' is unfounded. When we consume an apple, we ingest the fruit's genes; when we eat bread, we consume the grain's genes, and when we have a schnitzel, we consume the genes of a pig. Does this make us sick or alter us in any way? No. During the digestive process, our bodies break down not only proteins, carbohydrates, and fats but also foreign genetic material, utilizing it to sustain ourselves.

The discussion is no longer about the modified plant but the process by which it is produced.

Furthermore, genetic engineering has made significant strides. Today's genetically engineered plants are virtually indistinguishable from conventional breeds. This is achieved through genome editing techniques like the Crispr/CAS method, where the genetic material is slightly modified and optimized, akin to using a scalpel.

Those who previously felt uneasy about consuming genetically modified plants due to their perceived difference from conventionally bred plants no longer have a valid argument. Therefore, the discussion is no longer about the modified plant itself but rather the process by which it is produced.

As a reminder, since 1964, genetic modifications have been introduced into the genome of plants in Europe and elsewhere using methods that may sound alarming. Plants were bombarded with radioactive substances in fields and gardens, and now in laboratories. According to the International Atomic Energy Agency, more than 3300 plant varieties have been created through this so-called mutagenesis and have been approved in 70 countries. Some of these varieties are still used and consumed today, including many types of grain, rice, and citrus fruits, such as red grapefruit, which is also sold as an organic product.

In comparison, modern genetic engineering techniques are remarkably gentle and elegant.

While this may initially sound concerning, these plant varieties are not inherently radioactive simply because radiation was used in their production. Similarly, new plant varieties created through mutagenesis are not chemically poisoned, as the mutagenesis process can also be triggered by chemicals. These methods, perceived as 'natural' breeding, are employed to create new varieties.

In comparison, the methods currently discussed to enhance the properties of plants through modern genome editing techniques are remarkably gentle and elegant.

Furthermore, it is worth noting that the taste and nutrient content of plants can also be specifically optimized through these methods. Let us embrace the opportunity to experience these new varieties.



Kindly note:

We, a non-native editorial team value clear and faultless communication. At times we have to prioritize speed over perfection, utilizing tools, that are still learning.

We are deepL sorry for any observed stylistic or spelling errors.

Anke Fossgreen has been leading Tamedia's knowledge team since 2022. She has been working as a science editor at Tamedia since 2000. During her doctoral thesis, she conducted research on Alzheimer's disease. Her interests lie in biology, health, nutrition, medicine, and exercise. This opinion piece was first published in the "Tages-Anzeiger" on April 18.

Politics seems resistant to facts

Beat Keller

Beat Keller

Beat Keller ist Professor für Molekulare Pflanzenbiologie an der Universität Zürich

«Plant breeding calls for liberal rules»

Jürg Niklaus

Jürg Niklaus

Jürg Niklaus has a doctorate in law and is an advocate of plant breeding.

More pesticides, more genetic engineering: How we are overcoming hunger.

Markus Somm

Markus Somm

Journalist, publicist, publisher and historian

«The fear of genetically modified plants is unwarranted»

Anke Fossgreen

Anke Fossgreen

Head of Knowledge Team Tamedia

«Politicians must avoid pushing prices up even more»

Babette Sigg Frank

Babette Sigg Frank

President of the Swiss Consumer Forum (KF)

Seizing the opportunity of green biotechnology

Roman Mazzotta

Roman Mazzotta

Country President Syngenta Switzerland

«Sustainability means more»

Hendrik Varnholt

Hendrik Varnholt

Journalist at Lebensmittel Zeitung

«One-third organic farming does not solve the problem»

Olaf Deininger

Olaf Deininger

Development Editor-in-Chief Agrar-Medien

«Ecological methods alone won’t cut it»

Saori Dubourg

Saori Dubourg

“Ecological methods alone won’t cut it”

«Most fears about pesticides are misplaced»

Michelle Miller

Michelle Miller

Columnist at Genetic Literacy Project and AGDaily

Agriculture needs new technologies

Erik Fyrwald

Erik Fyrwald

CEO Syngenta Group

«Modern pesticides can help fight climate change»

Jon Parr

Jon Parr

President of Syngenta Crop Protection

«Who is afraid of the evil GMOs?»

Jürg Vollmer

Jürg Vollmer

Editor-in-Chief of «die grüne» magazine

Content in German

«What plant breeding brings us»

Achim Walter

Achim Walter

Professor of Crop Science, ETH Zurich

Content in German

«Research and work place needs impetus»

Jan Lucht

Jan Lucht

Head of Biotechnology at Scienceindustries

Content in German

«Agriculture plays a major role»

Jan Grenz

Jan Grenz

Lecturer in Sustainability, School of Agricultural, Forest and Food Sciences HAFL

«Understanding nature’s mechanisms better»

Urs Niggli

Urs Niggli

Agricultural scientist and president of Agroecology Science

«For food security, we need genuine Swiss production»

Jil Schuller

Jil Schuller

Editor «BauernZeitung»

«Lay people completely disregard the dose»

Michael Siegrist

Michael Siegrist

Professor of Consumer Behaviour, ETH Zurich

Content in German

«Is organic really healthier?»

Anna Bozzi

Anna Bozzi

Head of Nutrition and Agriculture at scienceindustries

Content in German

«Genetic engineering and environmental protection go hand in hand»

Dr. Teresa Koller

Dr. Teresa Koller

Researcher at the Institute of Plant and Microbiology at the University of Zurich

«The «Greta» generation will rigorously dispel paradigms.»

Bruno Studer

Bruno Studer

Professor for Molecular Plant Breeding, ETH Zurich

Content in German

«Overcoming the urban-rural divide with constructive agricultural policy»

Jürg Vollmer

Jürg Vollmer

Editor-in-Chief of «die grüne» magazine

Content in German

«We protect what we use»

Regina Ammann

Regina Ammann

Head of Business Sustainability, Syngenta Switzerland

Content in German

Related articles

Why AI has not yet had its breakthrough in agriculture
Knowledge

Why AI has not yet had its breakthrough in agriculture

Artificial intelligence is gaining ground in many areas. However, the new technology does not yet seem to have really arrived in agriculture. The reason for this is nature, which is throwing a spanner in the works of AI. Nevertheless, the opportunities that AI could offer agriculture are immense.

Potato farmers want robust varieties
Media

Potato farmers want robust varieties

As the use of pesticides is to be massively reduced, the potato industry now wants to focus on more robust varieties. The industry has even concluded a target agreement with the federal government. This is ambitious: By 2040, robust varieties are to thrive on 80% of potato cultivation areas.

How genetic engineering is saving the Cavendish banana
Media

How genetic engineering is saving the Cavendish banana

The most popular banana variety - the so-called Cavendish banana - could soon disappear due to a persistent fungus. Australian researchers have developed a solution based on genetic engineering.

Nutrition: Does the future belong to the green gene scissors?
Knowledge

Nutrition: Does the future belong to the green gene scissors?

New plant varieties contribute to security of supply. The new breeding methods known as "gene scissors", such as Crispr, have the potential to revolutionise agriculture and nutrition.